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RIdentification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential
part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery
centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports
also suggest starting to address such issues at the hit selection stage.
In order to prioritizemolecules during the early drug discovery phase and to reduce the risk of drug attrition due
to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to pre-
dict the potential hERG blockage of new drug candidates.
In this review, wewill describe the current in silicomethods developed and applied to predict and to understand
the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then
discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS
and how systemic approaches can help in the drug safety decision.

© 2015 Elsevier B.V. All rights reserved.
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the heart is commonly recorded using electrocardiography (ECG)
approaches. These recent years, a particular channel was extensively in-
vestigated as it was found to play a major role in both cardiac electro-
physiology and drug safety [1]. This protein is encoded by the human
ether-a-go-go related gene (hERG), which produces the pore-forming
subunit of a delayed rectifier voltage gated K+ channel. The family
name “ether-a-go-go” was coined in 1969 [2] and was intended as ref-
erence to how the legs of mutant flies shake under ether anesthesia
like the go-go dancers of the 1960s [3]. During drug development,
there are in fact several types of cardiovascular toxicity that have to
be considered, but admittedly, promiscuous block of cardiac hERG
investigations of hERG channel blockers: New insights and current
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channels by a variety of structurally different low molecular weight
drugs represents a major therapeutic challenge with profound impacts
on human health. It is indeed known that genetic disorders and drugs
that affect ion channels in the heart can change ECG parameters such
as the QT-interval. A special cardiovascular safety concern is commonly
referred to as QT interval prolongation (Fig. 1). QT interval (which
represents the time from the depolarization to the repolarization of
the ventricules) prolongation can cause Torsade de Pointes (TdP), a
ventricular tachyarrhythmias. If this episode resolves spontaneously
and rapidly, it can trigger syncope and in extreme situations can prog-
ress to ventricular fibrillation and sudden death [4,5].

These last years, it was found thatmany drugs belonging to different
chemical and therapeutic groups, such as antiarrhythmics, anti-
histamines, antifungals, antipsychotics or antitussives, have the poten-
tial for QT prolongation and may cause TdP while being relatively po-
tent inhibitors of hERG. For instance terfenadine (Antihistamine),
astemizole (Antihistamine), and cisapride (Serotonin receptor agonist)
were all approved for human use andwerewithdrawn from themarket
as they had safety issues, inducing QT interval prolongations and ar-
rhythmias. Along the same line, vardenafil (Anti-anginal/vasodilator)
and ziprasidone (psychiatric drug) were approved but with cautionary
labeling as they can affect the ECG (see sites such as the Internet Drug
Index: http://www.rxlist.com or the list of “QTDrugs” at: https://
www.crediblemeds.org or at: http://www.sads.org.uk/) [6].

As a result of these observations and because of the unjustified risk
of sudden cardiac death, regulatory agencies started to be concerned
by the potential risk of Long QT Syndrome (LQTS) caused by drugs
and more specifically, given our present understanding of the problem,
by hERG (although in theory many other events could cause LQTS and
LQTS are not always associated with cardiac toxicity). A first guideline
(the regulatory basis for safety pharmacology studies is defined by the
international conference on harmonization (ICH) guidelines, e.g., the
non clinical guideline S7B) was adopted in 2005 that required from
the pharmaceutical companies to identify drugs with QT liability. A sec-
ond guideline was compiled in parallel (the clinical guideline ICH E14).
There, the FDA required for almost all new low molecular weight
drugs to be assessed in a “thorough QT” clinical study [7] to determine
if the drug prolongs the heart-rate-corrected QT interval (QTc).
U
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Fig. 1. Schema of a normal electrocardiogram (on the left)
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Additionally, the harmonization for drug labeling was also requested.
With these guidelines, it is believed that improving the efficiency and
effectiveness of medical product development could be advanced
most rapidly by combined analysis of clinical and preclinical data from
previous marketing applications. For example, the FDA reviewed N250
thorough QT study reports, of which ~20% have been positive for QT
prolongation [8]. Consequently, many drugs had to be withdrawn
from the market [9].

As mentioned above and directly related to these guidelines, several
studies have shown that the blockage of the delayed rectifier current
during the inward rectification (Ikr) was a primary factor in acquired-
LQTS. Such deregulation of the voltage dependent K+ ion channel is
mediated by the human ether-a-go-go related gene (hERG), a key
component of the IKr [4,10]. Seventy-eight Kv channel family have
been reported so far [11] and although hERG (defined also as KCNH2
and Kv11.1) is expressed in a wide array of tissues, its physiological
function is best characterized in cardiac cells where it plays a critical
role in the repolarization of the cardiac action potential [2]. Globally,
during the plateau phase, there is reduced K+ permeability whereas
the K+ channel remains open during the repolarization phase [12].
Because of the importance of this channel on human health, functional
assays measuring drug-induced blockage of hERG current started to be
developed and are now routinely used [13,14]. All major pharmaceuti-
cal companies have to monitor the potential risk of LQTS induced by
new drugs during each stage of the drug discovery process [15]. To as-
sess the hERG channel blockage induced by a drug, electrophysiological
experiments (i.e., patch clamp) were the preferred techniques. The
drawback is that such studies are expensive and time consuming. Sim-
pler, faster and more “high-throughput”, binding assays can also be
used but there are concerns about the physiological relevance of such
experiments. Of importance is that all these experiments allow to devel-
op databases that should ultimately help to design theoreticalmodels to
rapidly flag newmolecules as being potential hERGbinders [16]. Overall
and independently of the assay used, it is in general very difficult to
derive guidelines for chemical synthesis from analysis of such experi-
mental data [17]. In the meantime, in order to improve our knowledge
over the mechanisms of blockage and possibly facilitate drug develop-
ment, structural biology investigations and/or mutagenesis studies in
versus a prolongation of the QT interval (on the right).
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combinationwith various homologymodels of the channelwere carried
out such as to propose likely poses for thedrug blockers into the channel
and give new ideas for compound optimizations [18]. Ligand-based
models were also established such as to suggest key chemical features
to avoid during the design of a new drug andwhere chemical modifica-
tions could be introduced in the molecules to reduce binding to the
channel [19].

There are however many difficulties with hERG studies and drug
development strategies. For instance, the relationship between
hERG block and clinical QTc (corrected QT) prolongation is still unclear
and some drugs that inhibit hERG (verapamil) do not trigger TdP (and
vice versa). While all typical TdP are high-potency hERG blockers,
not all hERG blockers cause TdP. For example, both verapamil and
ranolazine are hERG blockers and prolong QT, but appear not to be
proarrhythmic, because of the effects on calcium (verapamil) or late
sodium (ranolazine) currents [20]. Indeed, systemic approach studies
suggest the involvement of others proteins and others mechanisms in
TdP [21]. Some insights start to be provided about the underlying com-
plexity of such cardiac toxicity problem, stressing the fact that hERG
liability does not necessarily translate into TdP risk in humans. Along
the same line, estimates are that 40–70% of the new molecular entities
developed as potential therapeutic agents test positive when assayed
for hERG blocking liability [22]. These molecules are then abandoned
while their true torsadogenic potential is unknown. To some extent,
these problems could be acceptable if TdP risk could be clearly elicited
in clinical trials. However, drug induced TdP from non-antiarrhythmic
drugs is a relatively rare event and may not be detected even in clinical
trials of several thousands of patients, underlying further the challenges
ahead.

Because hERG assays and QT animal studies are expensive and time
consuming specially in the early stages of drug discovery, when numer-
ous molecules would need to be assessed, or else because assay results
could be misleading, numerous in silico models have been developed
over the years to assist decision making (see a list of free in silico tools
and databases at www.vls3d.com, [23]).With this review, wewill pres-
ent the new insights and current predictive in silico models developed
for hERG and the new investigations based on systemic approaches re-
lated to the acquired-LQTS.

2. Diagnosis of QT-interval prolongation and harmonization of the
data for in silico predictions

Numerous issues have been reported on the prediction of drugs
that induced LQTS, notably drug-metabolism, drug solubility, the vari-
ability of the concentration of inhibition depending upon the experi-
mental methods used and the relation between different clinical
observations and QT-interval prolongation [24]. In this review, we will
highlight several key points that should be taken into account by drug
designers in order to develop novel and more accurate algorithms and
protocols.

2.1. Detection of QT prolongation at the clinical level

One of the most critical issues in the development of predictive and
accuratemodels is the acquisition of reliable data, not only at themolec-
ular level, but also at the clinical level. Such harmonization is often
discussed by the different agencies.

In 2005, based on close to 300,000 case reports of suspected adverse
drug reactions for 52 proarrhythmic drugs, De Bruin et al. reported a
significant association between the hERG blockage of drugs and ventric-
ular arrhythmias and sudden death. Interestingly, these reports on
drug-induced Torsades de Pointes concerned more often women
(68%) [25].

Recently, Kesselheim et al. conducted a study comparing prescrip-
tion information (i.e., drug labels) approved by the FDA and by the
European, Canadian and Australian regulatory authorities. They found
Please cite this article as: B.O. Villoutreix, O. Taboureau, Computational
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that significantly fewer adverse drug reactions were listed in the UK
label compared with the US label and concluded that the international
variations in the presentation of safety data in the drug label could
have important implications for patient safety [26]. In addition, substan-
tial differences on safety information exist for several therapeutic clas-
ses, notably the cardiovascular system [27].

Warnier et al. did a comparison of theQT interval prolongation label-
ing for newly approved drugs [28] and concluded that only a moderate
agreement in the semantic use of the phrase QT-prolonging properties
of a drug inUS and EU could be found, although the expected clinical de-
cisions were more consensual. For example, one product (asenapine)
had no QT-prolonging properties according to the EU label, whereas
this drug possibly prolongs the QT interval according to the semantics
in the US label. So, differences in QT labeling language can result in mis-
communication of safety information and also in the development of
TQT models [29].

2.2. Harmonization of the in vitro approaches for in silico prediction

The problem of harmonization is also present at the preclinical level,
where different in vitro approaches for the determination of hERG bind-
ing are applied, such as whole-cell patch clamp electrophysiological as-
says, fluorescence-based assays, radioligand binding assays or rubidium
flux, on differentmammalian cell lines i.e., HEK (HumanEmbryonic Kid-
ney cells), CHO (Chinese Hamster Ovary cells), COS (Cercopithecus
aethiops cells) and neuroblastoma, or non mammalian cell lines such
as XO (Xenopus laevis oocytes) [30,31]. For example a measured IC50

of 100-fold difference has been determined for loratidine in the function
of the cell lines used (100 μM in HEK and lower than 1 μM in XO cells,
respectively) [32,33].

Moreno-Galindo studied the impact of the whole-cell patch-clamp
configuration on the pharmacological assessment of the hERG channel
and estimated that a potential source of error could be related to the
conventional whole-cell configuration of the patch-clamp technique
(at least on HEK-293 cells). It may have an impact on conclusions re-
garding the mechanism of inhibition. [34]. However, since the primary
goal of pharmaceutical industry is to determine the hERG-blocking po-
tency of drugs (IC50), this technique is still recommended for regulatory
submissions.

3. Ligand-based approaches

As the majority of the in vitro experiments to assess drug-induced
LQTS are associated to the hERG blockage, understandably in silico ap-
proaches (and more specifically ligand-based approaches) started to
be developed as they are known to be relatively efficient in dealing
with this type of data. Interestingly, whereas the first in silico model
was based on fifteen molecules [35], the most recent one which is
also available online is based on more than 4980 diverse molecules col-
lected from several sources [36]. Other groups, essentially in the private
sector, have published models with even larger private datasets, as
indeed most pharmaceutical companies have their own source of data
[37,38]. Recently, experimental data obtained from a primary screen
using electrophysiology approaches performed on more than 300,000
structurally diverse compounds were stored in a large database [39].
Although these data can be visualized for a specific query compound,
the database is not available to the scientific community for building
predictive hERG model. Overall, close to 70 hERG models have been re-
ported in the literature using variousmolecular descriptors in combina-
tion with diverse machine learning methods and showing a large panel
of performance (Table 1). Comments about some of these models have
been reported previously [40,41].

A majority of the models are classifiers and only a few regression
models on a small subset of compounds have been reported [42]. This
can be explained by the analysis of the hERG content inside the ChEMBL
database, one of the largest repositories of bioactive compounds, on
investigations of hERG channel blockers: New insights and current
/j.addr.2015.03.003
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t1:1 Table 1
t1:2 hERG models reported in the literature.

t1:3 Authors Compounds Methods Model accuracy

t1:4 Ekins et al. [35] 22 3D-QSAR R2 = 0.90
t1:5 Cavalli et al.[125] 31 CoMFA-QSAR R2 = 0.95
t1:6 Roche et al. [126] 472 Neural network cc = 0.70
t1:7 Keserü et al. [62] 68 Hologram QSAR cc = 0.97
t1:8 Pearlstein et al. [10] 32 COMSIA-QSAR Q2 = 0.571
t1:9 Aronov et al. [44] 414 Pharmacophore/Voting cc = 0.82
t1:10 Bains et al. [127] 124 Algorithm genetic ROC = 0.89
t1:11 Yap et al. [128] 310 SVM acc = 97%
t1:12 Aptula et al. [129] 19 QSAR R2 = 0.87
t1:13 Tobita et al. [130] 73 SVM acc = 90 - 95%
t1:14 Cianchetta et al. [131] 882 GRIND-QSAR R2 = 0.77
t1:15 Yoshida et al. [132] 104 2D-QSAR R2 = 0.70
t1:16 Seierstad et al. [133] 439 2D-QSAR R2 = 0.52
t1:17 Bhavani et al. [134] 271 SVM acc = 93%
t1:18 Coi et al. [135] 82 Codessa-QSAR R2 = 0.82
t1:19 Dubus et al. [136] 203 Recursive partition acc = 96%
t1:20 Ekins et al. [137] 99 Recursive partition/SOM R2 = 0.83; acc = 95%
t1:21 Sun H. [138] 1979 Naives Bayes classifier acc = 0.87%
t1:22 Gepp et al. [139] 339 Decision tree acc = 76%
t1:23 Song et al. [63] 90 Fragment-based-QSAR R2 = 0.91
t1:24 Aronov et al. [45] 194-519 Pharmacophore/Voting acc = 78-82%
t1:25 Waring et al. [140] 7685 Logistic regression acc = 70%
t1:26 Leong [141] 26 Pharmacophore/SVM R2 = 0.97
t1:27 Gavaghan et al. [37] 8832 Onion D-optimal design-QSAR acc = 67-93%
t1:28 Obrezanova et al. [142] 137 Gaussian processes R2 = 0.81
t1:29 Filz et al. [56] 163 PASS program acc = 87%
t1:30 Li et al. [46] 491 SVM acc = 94%
t1:31 Inanobe et al. [143] 32 3D-QSAR R2 = 0.90
t1:32 Jia et al. [144] 1043 SVM acc = 94%
t1:33 Chekmarev et al. [145] 83 KNN-SVM-SOM acc = 67-74%
t1:34 Thai et al. [146] 313 Binary QSAR acc = 82-88%
t1:35 Thai et al. [147] 285 Counter propagation NN acc = 0.93
t1:36 Nisius et al. [148] 275 Similarity-based classifier acc = 87%
t1:37 Nisius et al. [148] 232 SVM-cluster analysis acc = 0.85
t1:38 Hansen et al. [149] 676 Bias regression-QSAR RMSE = 0.60
t1:39 Ermondi et al. [150] 31 Almond-QSAR R2 = 0.93
t1:40 Doddareddy et al. [48] 2644 LDA-SVM acc = 0.89-0.94
t1:41 Su et al. [151] 250 4D fingerprint-QSAR acc = 0.91
t1:42 Hidaka et al. [152] 37 SOM NA
t1:43 Garg et al. [153] 68 2D-QSAR R2 = 0.83
t1:44 Borosy et al. [154] 25 Hologram QSAR R2 = 0.94
t1:45 O'Brien SE et al. [38] 58963 NN Se = 0.86; Sp = 0.83
t1:46 Gunturi SB et al. [155] 166 kNN-LLR Q2 = 0.81
t1:47 Kramer C et al. [156] 113 PLS, SVR R2 = 0.84
t1:48 Fenu LA et al. [157] 3916 NB acc = 0.53
t1:49 Obiol-Pardo et al. [96] 400 PLS R2 = 0.52
t1:50 Robinson R. et al. [158] 368 SVM, RF MCC = 0.10-0.83
t1:51 Sinha N. et al. [159] 157 NN R2 = 0.73
t1:52 Du-Cuny L. et al. [160] 529 kNN R2 = 0.59
t1:53 Kim JH. et al. [161] 293 NB, RF Acc = 0.82-0.96
t1:54 Su BH. et al. [162] 2214 SVM Acc = 0.73-0.90
t1:55 Broccatelli F. et al. [24] 803 GA-kNN, PLSDA Acc = 0.76-0.97
t1:56 Kar S. et al. [163] 242 LDA, PLS R2pred = 0.53-0.60
t1:57 Tan Y. et al. [164] 113 Heuristic R2 = 0.91
t1:58 [Wang S. et al. [165] 806 NB, RP Acc = 0.85-0.89
t1:59 [Wang Z. et al. [166] 1686 NB, KNB, PWM SE = 0.55-0.66
t1:60 Pourbasheer et al. [167] 45 MLR, SVM Q2 = 0.56- 0.89
t1:61 Czodrowski P. [43] 3721 RF AUC = 0.66
t1:62 Czodrowski P. [43] 694 RF AUC = 0.56-0.66
t1:63 Coi A. et al. [85] 59 GA-MLR Q2 = 0.87
t1:64 Moorthy N. et al. [168] 25 MLR Q2 = 0.71-0.87
t1:65 Polak S. et al. [29] 98 Various RMSE = 0.86-1.17
t1:66 Ruggiu F. et al. [169] 1889 Stochastic QSAR sampler Balanced Acc = 0.66
t1:67 Mirams GR. et al. [170] 34 NB Acc = 0.62
t1:68 Liu LL. et al. [171] 2644 NB Acc = 0.58-0.91
t1:69 Shen MY. Et al. [172] 1668 SVM Acc = 0.87
t1:70 Braga RC. et al. [36] 4980 SVM, RF, GBM, TreeBag Acc = 0.83-0.93
t1:71 Kireeva N. et al. [173] 242 SVM-GTM Acc = 0.68 = 0.80
t1:72 Yu P. et al. [174] 806 CPAR, CMAR, CBA F-score = 0.60-0.78
t1:73 Kratz K.M. et al. [175] 86 Pharmacophore model AUC = 0.91
t1:74 Kratz K.M. et al. [175] 37 Pharmacophore model AUC = 0.89
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which the measurements show a large deviation between the different
assays [43]. Such deviation can be reasonably coveredwith the transfor-
mation of the measurement into class.
Please cite this article as: B.O. Villoutreix, O. Taboureau, Computational
predictive models, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016
Based on these models, several structure activity relationships were
revealed such as the presence of key features including two hydropho-
bic features and one hydrogen bond acceptor (preferably a charged
investigations of hERG channel blockers: New insights and current
/j.addr.2015.03.003
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nitrogen) [44,45]. It has been shown that removing carbons and/or
changing the electronic environment around the basic nitrogen can re-
sult in a reduction in hERG inhibition [46,47]. In addition, transforma-
tions that add a hydroxyl group reduce hERG inhibition [36]. Some
bioisosteric replacements have resulted in dramatic changes in activity.
Replacement of a furane ring by a tetrazole ring resulted in a substantial
alteration in hERG binding, changing the compound from a blocker to
non-blocker. Modification of chlorine to the hydroxyl group or the ni-
trile group in an aromatic ring changes an hERG blocker to a non-
blocker compound [36]. Using the maximum common substructure
search to learn about the structural features specific to hERG blockers,
Doddareddy et al. found that the three major factors contributing to
the hERG blockage are a positively charged nitrogen atom, high lipophi-
licity and the absence of negatively charged oxygen atom [48]. It was
also confirmed later on by Sherhod et al. based on an emerging pattern
mining method. In addition to the known pharmacophores for hERG
channel inhibition, other features were characterized like compounds
with a quinolinol group that were found to be hERG blockers [49]. It
should also be mentioned here that some authors suggest that for the
prediction of primary targets, the benefit of using 3D over 2D similarity
search appears small while for the prediction of off-targets, like in the
case of hERG, the added benefit of using 3D similarity seems to be
large [50,51].

Many hERG models have been developed by software companies
but are not always easy to evaluate and to compare. On the other
hand, some tools (essentially fromacademic groups) are freely available
to predict the hERG activity. We can mention Pred-HERG (http://
labmol.farmacia.ufg.br/predherg), Tox-Comp.Net (http://www.tox-
comp.net/), and ACD-/I-Lab (https://ilab.acdlabs.com/iLab2/index.
php). Not specifically associated to hERG, butwith the possibility to pro-
vide also interesting output on hERG inhibition, are the use of large
chemogenomics databases such as ChEMBL [52], PubChem [53] and
ChemProt [54] where it is possible to carry out some search by chemical
similarity. Target prediction web services such as the SEA search tool
[55], PASS [56], Swiss Target Prediction [57], HitPick [58], SuperPred
[59], and admetSAR [60] can also be considered for hERG prediction.

Overall, with these tools it is now possible to estimate the risk for a
compound to be an hERG inhibitor and which features contribute to
that. For example, we performed a search on three known drugs acting
on hERG (terfenadine, astemizole and cisapride) and 2 molecules
(vardenafil, ziprasidone) with a warning for QT prolongation on their
prescription label. Looking for instance in ChemProt, all of them have
been reported with an activity on hERG i.e., terfenadine (pIC50exp =
6.67 [61]), astemizole (pIC50exp = 8.04 [62]), cisapride (pIC50exp =
7.57 [63]), vardenafil (pIC50exp = 4.89 [64]), and ziprasidone
((pIC50exp = 6.92 [65]). We then analyzed each compound with the
Stardrop package (Optibrium). The Stardropmodel for hERG prediction
is built on a dataset of about 200 molecules with patch-clamp IC50

values for inhibition of hERG K+ channels expressed in mammalian
cells. The model returns pIC50 values and some additional information
such as the distance of the predicted compound from the chemical
space of the training set such as to partially assess the reliability of the
results. An interesting feature of this package is the “glowingmolecule”
mode that displays the results of a computational model rendered as a
heat map to highlight the regions of the molecule that are responsible
for the activity in the model with red indicating structural features
that have a positive effect and the cooler blue color a negative effect
on the model. In our easy test case (as some of the molecules were cer-
tainly present in the training of the statistical model), red areas are
zones that are predicted to increase hERG activity and could be impor-
tant to modify in order to produce optimized compounds. The pIC50

values obtained for our 5 test compounds were 6.7 for terfenadine, 8.2
for astemizole, 5.8 for cisapride, 5.8 for vardenafil and 6.6 for
ziprasidone. Because hERG activity is only one endpoint, we also com-
puted with the FAF-Drugs2 server [66] some other properties like the
Lipinski rule of 5 [67] and the Pfizer's 3/75 rule [68] (the rule is agnostic
Please cite this article as: B.O. Villoutreix, O. Taboureau, Computational
predictive models, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016
with regard to the details of the mechanism of toxicity and states that
there is a six fold reduction in toxicity in vivo (24-fold for bases) when
the compound's log P ≤ 3 and PSA ≥ 75 Å2) to look at the molecules
from another angle. Terfenadine has one violation to the R05 (due a
predicted log P higher than 5) and falls it the read area (risky zone) of
the 3/75 rule. Astemizole passes the R05 but not the 3/75, cisapride
passes the R05 and is close to the 3/75 threshold, vardenafil passes the
RO5 and the 3/75 rule, while ziprasidone passes the RO5 and is really
border line with regard to the 3/75 rule (Fig. 2).

Finally we should notice that natural products start to be screened
on hERG and some of them show potential risk for inducing LQTS
[69–71]. Integration of such information into hERG models should
help to develop new and more accurate in silico prediction packages.
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Four identical α-subunits form the hERG K+ channel and each
unit accommodates six α-helical transmembrane segments defined as
S1–S6. The voltage sensor domain (VSD) is embedded by segments
S1–S4. The movement of the gating is governed by the positively
charged Lys and Arg in the S4 helix and enables the pore domain to
open and to close in response to changes in membrane potential.
Segments S5–S6 form the pore domain allowing the K+ ions to cross
the membrane. A lengthy S5-P linker that contains an amphipathic
helix (the turret helix) and a selectivity filter loop are also present in
these segments. Finally, the N-terminal domain, consisting of the Per-
Arnt-Sim (PAS) domain, and the C-terminal domain,which is composed
of a cyclic nucleotide-binding domain, are located on the intracellular
side of the membrane [72] (Fig. 3).

All structure-based studies are performed on homology models as
hERG has not yet been crystallized. The structuralmodels are essentially
based on bacterial K+ channels KscA (close form) [73], KvaP [74], MthK
[75], Kir2.2 [76] and mammalian channel Kv1.2 [77], although the se-
quence identity is relatively low. A variety of homology models of the
open, partially open or closed forms of hERG in combination to docking
(rigid and flexible), and molecular dynamics described primarily
conformational change differences in the S6 helices. For example, an
atomistic hERG model generated by long supercomputer molecular
dynamics simulations has developed and used to predict drug
cardiotoxicity [78]. In the closed state the S6 helices are smooth, creat-
ing a point of constriction below the central cavity [17]. The residue
G648 is conserved all over the potassium channel members and seems
to act as a hinge point in the bending of the S6 helix. The conformational
change produced in S6 allows the K+ ions to get access to the central
cavity and could act as a selectivity filter [72,78]. Beside this amino
acid, three other residues (Y652, F656 and V659), facing inward to-
wards the pore domain, play an important role in drug binding [79,
80]. Additional residues such as T623, S624 and V625, located at the
base of the selectivity and W563, F559 and F551 facing outward to-
wards the voltage sensor, contribute to the differences in activation
and inactivation properties of hERG [81,82]. Models of the hERG
potassium channel and of the drug-binding cavity (surrounding by the
S6 segments) are depicted in Fig. 4.

The movement of S4 in hERG has also been studied to explain the
gating properties. Elliott et al. [82] suggested that the extent of S4move-
ment in hERG is large and similar to other Kv channels. This movement
is coupled to the opening of channel gates located at the intracellular
aspect of the channel via the S4–S5 linker, leading to K+ efflux [83].

Since most hERG-blocking drugs access the pore cavity from the in-
tracellular side of themembranewhen the channel opens in response to
membrane depolarization, open state poremodels are likely to best rep-
resent the arrangements of key amino side chains that are productive
for drug binding. More specifically, the open state MthK structure was
recently suggested to be the best template to model binding of many
drugs [84].
investigations of hERG channel blockers: New insights and current
/j.addr.2015.03.003
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Combinations of structure- and ligand- based approaches to study
the different binding modes were also investigated. Coi et al. built four
3D models representing different conformational states of hERG K+
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to develop QSAR models [85]. However, molecules can block hERG in
other sites and thus docking studies need to be performed cautiously.
For example fluvoxamine and doxepin blocked the channel indepen-
dently of mutations around Y652 and F656. Similarly, peptides block
in the entrance of K+ channels [61]. An interesting perspective of
structure-based approaches is to combine them with hERG polymor-
phism and drug response variation data. Some clinical studies have re-
ported a higher risk of LQTS induced by drugs in patients having
genetic variations in hERG and we could imagine that structure-based
approach could provide new structural basis for the development of
safer drugs [86–94]. For example, Du et al. estimated the activity of
the ranolazine drug (an antianginal) on hERG and concluded the
N588Kmutation is unlikely to be effective in patientswith short QT syn-
drome. Using docking simulations, the study indicated that the large
size of ranozaline favors interactions with the hERG pore [18].

Interestingly, allosteric modulation of the hERG K+ channel started
to be studied as an alternative way of interaction. For example, com-
pound A-935142 has recently been stated to possess a binding site re-
sponsible for hERG current enhancement, which is different from the
pore binding site of the traditional hERG blockers [95,96]. Similarly Yu
et al. [97] demonstrated that LUF6200 is an allosteric inhibitor. The
binding sites of several peptide blockers like saxitoxin and BeKm-1 are
located in the extracellular parts of the hERG K+ channel [98,99]. Multi-
ple binding sites for these diverse compounds on the hERG K+ channel
imply a plausible allosteric modulation among them. They might allo-
sterically increase (allosteric inhibitors/negative allosteric modulators)
or decrease (allosteric enhancers/positive allosteric modulators) the
dissociation rates of typical hERG blockers and thus mediate a greater
(or poorer) safety profile for some drugs. Dynamic simulation studies
could be performed and help in deciphering the allosteric modulation
of some of these compounds.

5. Systemic approaches

5.1. Multiple ion channels

The role of hERG in the ventricular repolarization is of critical impor-
tance, however, it is widely accepted that the complexity of the events
involved in TdP makes the cardiac safety assessment, based only on
hERG, a high risk of producing either false positive or negative results.
In fact, drug effects on multiple ionic currents may modulate or mask
the effects of hERG blockade [100,101]. For example, two drugs
displaying low hERG safety margins yet not demonstrating convincing
QTc prolongation are eltrombopag (used to treat low blood platelet
counts) and lamotrigine (anticonvulsant). Based solely on hERGpotency
investigations of hERG channel blockers: New insights and current
/j.addr.2015.03.003
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and therapeutic plasma exposures, both drugs would likely have been
categorized as having high risks for QTc prolongation and subject to un-
warranted attrition [21].

A hypothesis is that by blocking the inward current, through calcium
or sodium channel, the torsadogenic effect of outward current, by hERG
potassium channel, is also blocked. This is the case for example of fluox-
etine (antidepressants) and verapamil (treatment of hypertension,
cardiac arrhythmia) that have been shown to block opposing currents
(repolarizing (outward) hERG current vs. depolarizing (inward)
calcium current) [102,103]. However, it seems that the calcium or
Please cite this article as: B.O. Villoutreix, O. Taboureau, Computational
predictive models, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016
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sodium channel block needs to occur at the same concentration or at a
lower concentration than the hERG potassium channel block. For exam-
ple, bepridil, a calcium channel blocker, was removed from the market
in the United States because of TdP. It was shown that bepridil blocks
hERG potassium channels at a concentration lower than the one
required to block calcium channels, which could explain the acquired-
LQTS [8]. Similarly, alfuzosin, which is used for benign prostatic hyper-
plasia, was shown to mildly prolong the QT interval although it does
not block hERG. The drug seems to increase the late sodium current
during the cardiac action potential (hNav1.5) and thus extend the QT
interval [8].

Based on these observations, recent studies suggest that considering
multiple ion channels provides better cardiotoxicity predictions [104].
Obio-Pardo et al. developed a combination of docking simulations on
two potassium channels, hERG and KCNQ1, and 3D-QSAR for predicting
how the tested compoundwill block the potassium currents IKr and IKs.
As methods based solely on hERG provide a limited picture of the drug
effects on the ventricular repolarization, such combination approaches
outperform the classic hERG-based models [105]. Multiple QSAR
models have also been implemented in a cardiac safety simulator,
enabling the in vitro–in vivo extrapolation of the drug's proarrhythmic
effect and ECG simulation [106]. Therefore, other ions channels that
are modulated by drugs and involved in acquired LQTS and TdP are
now investigated in combination with hERG [7].

The recent introduction of the IonWorks plate-based device has ren-
dered the multiple ion channel electrophysiological assays popular
[107]. To better interpret the integrated drug effect on various ion chan-
nels, computational models to predict drug-induced changes in the
action of potential (AP) have been developed [108,109]. In these
approaches, potency data are directly integrated within the model by
reducing conductance in accordance with measured concentration–ef-
fect (C–E) curves. So, themodulation of other ion channels is considered
in this approach and leads to a better estimation of the cardiac risk as-
sessments. For example Davies et al. have developed a comprehensive
model that predicts AP modulation of ventricular midmiocardial cells
based on a panel of five ion channels and corresponding C–E curve
data [110]. Similarly, Kramer et al. measured the concentration-
responses of hERG, Nav1.5 and Cav1.2 currents for 32 torsadogenic
and 23 non-torsadogenic drugs from several therapeutic classes in an
automated gigaseal patch clamp instrument and developed a logistic re-
gression model that predicted more accurately the torsadogenic poten-
tial than models based on hERG effects alone [111].

Overall, themultiple ion channel effects (MICE) approach is believed
to be more robust than IKr assay alone at evaluating the proarrhythmic
risk of new drugs, with fewer false-positive results.

5.2. hERG trafficking inhibition

Recent findings indicated that chronic treatment with various drugs
not only inhibits hERG channels but also decreases hERG channel
expression in the plasma membrane of cardiomyocytes, which has
become another concern in safety pharmacology [112,113].

Understanding of drug-induced hERG trafficking inhibitionmaypro-
vide new strategies for predicting drug-induced QT prolongation and
lethal cardiac arrhythmia in pharmaceutical drug development.
For example Ficker et al. [114] demonstrated that arsenic trioxide
(“antineoplastic” or “cytotoxic” molecule) did not show any direct in-
hibitory effect on hERG channel activity but disrupted the hERG traffick-
ing by reducing the formation of the hERG-chaperone (Hsp90 and
Hsp70). Similarly the antibiotic geldanamycin inhibits the formation
of the hERG–Hsp90 complex that accelerates hERG channel degradation
[115]. Pentamadine, an antiprotozoal agent does not directly inhibit
hERG current but binds to hERG protein in a folding intermediate
conformation leading to arrest of channel maturation and disrupted
transport from the ER [113,116]. Interestingly, its inhibitory effect is re-
versed in the presence of pharmacological chaperones, astemizole and
investigations of hERG channel blockers: New insights and current
/j.addr.2015.03.003
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dofetilide, suggesting that pentamidine and pharmacological chaper-
ones compete for the same binding site within the hERG channel,
although the precise mechanism of action of pentamidine has not
been elucidated. Probucol, a cholesterol-lowering drug, accelerates the
degradation of mature hERG channels from the cell membrane through
accelerated caveolin-1 turnover [117]. Wible et al. estimated that
around 40% of hERG blockers carry the additional risk of inhibiting
hERG trafficking [118].

5.3. Transcriptional profiles

Drugsmay share similar andundesirable side effects despite being un-
related chemical structures or having different primary mechanisms-of-
action (MOA). Exploring similarities in drug-induced transcriptional
effects and combining with additional publicly available annotations
for LQT side effect enable to identify clusters of drugs with similar
expression profiles annotated for channel inhibitors. Babcock et al.
[119] performed such analysis combining the drug-induced transcrip-
tional effects from the Connectivity Map (cMap), a collection of
Affymetrix™ microarray profiles generated by treating three indepen-
dent lineages of cancer cell lines with small molecule drugs [120], and
the hERG inhibitors annotated using a database of experimental mea-
surements (hERGcentral) and clinical indications [39]. This analysis
showed that structurally diverse hERG inhibitors mediate similar
physiological effects revealed by transcriptional response profiles.
Furthermore, evaluation of enriched gene ontology (GO) annotations
among genes up and down regulated indicated positive effects on choles-
terol biosynthesis (GO:0006695), isoprenoid biosynthesis (GO:0008299),
and the unfolded protein response (GO:0030968), and negative effects
on cell cycle checkpoint (GO:0000075), S phase of mitotic cell cycle
(GO:0000084), and DNA replication (GO:0006260) although the phys-
iological correlation between hERG block and these processes remains
to be investigated.

6. Conclusion

Assessing the ability of all new drugs to cause TdP before reaching
the market is required from the regulatory agencies and the current
approaches focus exclusively on QT prolongation and hERG inhibition.
An impressive number of in silico studies have been performed to
understand the mechanism of drug-hERG blockage and to predict in
advance the torsadegenic risk of new potential drugs. However,
although these models provided structural key features in the interac-
tion with hERG, safe compounds can be predicted as hERG blockers or
even worse the algorithms can fail to detect toxic compounds [121].
Furthermore with such models, some hERG blockers, like fluoxetine or
verapamil would probably not be accepted on the market based solely
on hERG study. Indeed, it is widely accepted that hERG represents
only one of the multiple ionic currents involved in the mechanism of
ventricular repolarization and the modulation of these channels by
drugs may mask the effect of hERG blockage. These observations have
created recent interests in testing entire panels of cardiac ion channels
rather than just hERG. Drugs start to be screened on multiple ion chan-
nel assays and some in silicomodels start to investigate the combination
of the outcome from these assays.

hERG polymorphisms are believed to have a large contribution in
the acquisition of LQTS and numerous studies showed the impact of
several mutations in the variation of hERG blockage by drugs. However,
these results come essentially from in vitro studies and only few clinical
studies and on a small cohort of people have been reported. Clearly,
pharmacogenomic studies on hERG potassium channel in association
with computational structure-based approaches can provide new in-
sights on TdP andwould be of interest for the development of personal-
ized medicines.

Finally, chronic effects of drugs are not detected in conventional car-
diac safety screening. As some therapies are based on a long-term
Please cite this article as: B.O. Villoutreix, O. Taboureau, Computational
predictive models, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016
exposure to drugs, such analysis is of large interest. Recently, the use
of induced pluripotent stem cell (iPSC)-derived human cardiomyocytes
has been proposed to functionally assess chronic drug effects on the ac-
tion potential duration and cell excitability in cardiac tissue [122,123].
This technology is believed to create new opportunities for cardiovascu-
lar research by providing platforms to study themechanisms of disease
pathogenesis that could lead to new therapies or reveal drug sensitivi-
ties and has been recommended for adoption in the revised ICH guide-
lines in the near future [124].

Overall, the field of LQTS is tremendously active and the develop-
ment of future in silico methods more sensitive and more accurate to
predict TdP is ongoing.With the application of new andhigher through-
put assays, new data will be available and exploitable for a broader
understanding of the molecular pharmacology of acquired LQTS.
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